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The objective of the present study is to investigate the effects of droplet spacing on the heat 
and mass transfer characteristics of an individual droplet in a liquid fuel spray. The goal is to 
obtain a mathematical relationship between heat and mass transfer rates and local ambient 
properties which can be applied directly as an input for a complete liquid spray analysis. A 
three-droplet array in a cylindrical duct is used. The Navier-Stokes equations in vorticity- 
stream-function form and the energy equation are solved numerically by using a finite 
difference method with nonuniform cylindrical mesh. Nusselt number correlations for both 
the vaporizing and the nonvaporizing droplet array cases have been obtained. 
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Introduction 

The combustion of liquid fuel sprays is of substantial practical 
importance. It is involved in many combustion systems such as 
liquid rocket engines, afterburners, carburetors, and ramjets. 
The temperature inside a combustion chamber is typically high. 
The liquid fuel droplets injected inside the chamber undergo 
vaporization and, subsequently, combustion. In many practical 
situations, vaporization can be the rate-controlling factor. Thus, 
studies on the vaporization and combustion of the sprays are of 
vital importance for improving the performance of combustion 
systems using spray injections. However, the physical 
phenomena of evaporating and combusting sprays is extremely 
complicated, and modeling it is very difficult. Alternatively, the 
behaviors of individual droplets can serve as fundamental inputs 
for spray analysis. 

Most studies on the combustion of liquid fuel sprays consider 
the vaporization of either single isolated droplets or overall 
droplet sprays, and relatively few works have been done on 
interactions between droplets. Extensive reviews have been 
given by Williams, 1 Faeth, 2 Law, 3 and Sirignano. 4 

In real combustors, the Reynolds number based on fuel 
droplet diameter can be as high as several hundreds. Hence, the 
local mass and heat transfer around a droplet is not spherically 
symmetric. The droplet is initially cold and heats up with time. 
The transient droplet heat-up effect can be significant. Also, real 
fuels are not pure but multicompositional, with varying 
volatilities for the components. Nevertheless, classical droplet 
vaporization theory treats isolated droplets with a single- 
component, quasi-steady, and spherically symmetric model. It 
is on the relaxations of these simplifying features that modern 
developments of droplet vaporization theories are focusing. 

The single-droplet theory ignores the effect of the droplet on 
the ambient properties, but spray vaporization theory considers 
the influence of all the droplets on the spray and accounts for the 
full coupling among the properties of the ambient gas and 
droplets. In a dense spray situation, many droplets are present, 
and the average distance between droplets can become as low as 
a few droplet diameters. It is expected that the geometry and 
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scale of the diffusion field surrounding each individual droplet 
will be affected by droplet interaction. The Nusselt number and 
the functional form of the relationship between vaporization 
rates and local ambient conditions will be influenced by the 
droplet spacing. However, the existing spray combustion 
analyses have not included droplet interaction, but have 
considered only the oversimplified classical vaporization model 
for isolated single droplets. Although the spray vaporization 
models attempt to examine the combustion characteristics of 
the overall spray, it is essential that the droplet behavior be 
properly represented. Clearly, an understanding of the effects of 
droplet spacing on the vaporization characteristic of individual 
droplet is needed. Of course, it would be too complicated and 
consume too much computer time to incorporate any detailed 
droplet model in an already involved analysis of spray 
vaporization in a combustor. Instead, a mathematical 
relationship between vaporization rates and local ambient 
properties which can be applied directly as an input for a 
complete spray model is more desirable. 

Therefore the objective of the present study is to investigate 
the effects of droplet spacing on the vaporization characteristic 
of an individual droplet in a spray and to seek a more realistic 
representation of the vaporization law in a complete spray 
analysis. 

Some investigators have examined a few droplets in a well- 
defined geometry or many droplets in a periodic configuration. 
These arrangements are referred to as droplet arrays. Although 
artificial, these arrays can be very useful in obtaining 
information on the effect of droplet spacing on transport rates. 
Some work on heat and mass transfer to an array of 
nonvaporizing droplets with forced convection has been 
performed by Tal e t  al .  ~-s In these studies, an infinite array of 
spheres of radius a with a uniform spacing 2b (Figure 1) is 
considered. Due to symmetry and the nearly periodic character 
associated with an infinite array, no heat transfer or momentum 
transfer takes place at the streamwise equidistant plane between 
the spheres. By this assumption, the problem is reduced to a 
multitude of spheres in tandem in a square stream tube (Figure 
2). Because this is clearly a three-dimensional problem and 
appears to be intractable even with the latest numerical 
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Figure I 
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Assemblage geometry: (a) side view; (b) front view 

techniques, the square duct is replaced with a cylindrical duct of 
equal cross-sectional area. 

The Navier-Stokes equations in vorticity-stream-function 
form and the energy equation are solved numerically by a finite 
difference method with nonuniform cylindrical mesh. The 
diffusion terms are expressed by a central difference scheme and 
the convective terms (in both the vorticity and the energy 
equation) by an upwind difference scheme. The nonlinear 
coupling of the stream function equation and the vorticity 
equation are solved by iteration. 

It has been found that strong interaction between the flow 
fields surrounding neighboring droplets occurs when the 
droplet centers are less than two droplet diameters apart. 

In the present study, an approach similar to Tal's work has 
been adopted, although the governing equations as well as the 
numerical formulation are obtained independently. A study on 
grid spacing has been performed, and an optimum grid has been 
determined. In order to decrease the amount of false diffusion 

Notation 

a Radius of droplet, a = 1 
2b Distance between the centers of two neighbor 

droplets 
B Mass transfer number, B = Cp(T;-  T;)/L' 
Cp Specific heat at constant pressure 
d Diameter of droplet, d = 2a 
D Mass diffusivity 
F Generalized variable representing U, ~,, or T 
h Heat transfer coefficient 
k Thermal conductivity 
L' Heat of vaporization 
L Dimensionless heat of vaporization, 

L = L'/Cp(T[- T~) 
Nu o Local Nusselt number 

Average Nusselt number, ~ - - =  hd/k 
Pr Prandtl number, Pr = Cp#/k 
r' Radial coordinate in cylindrical coordinate system 
Re Reynolds number, Re = prod~# 
Sc S c h ~ d t  number, Sc = v/D 
T' Temperature 
T Dimensionless temperature, T= ( T ' -  T~)/(Ti'- T's) 
T~ Inlet temperature 
T; Droplet surface temperature 
U Normalized dimensionless vorticity, U = o~y 
v~ Inlet velocity 
x Dimensionless axial coordinate, x = z'/a 

X Value of x at outlet 
y Dimensionless radial coordinate, y = r'/a 
Y Normalized mass fraction of evaporating species, 

Y = ( Y ' -  Y',)/Y; 
z' Axial coordinate in cylindrical coordinate system 

Greek 

0 

V 

P 

(D' 

0,) 

symbols 
Thermal diffusivity, ~ = k/pCp 
Angle from frontal stagnation point 
Dynamic viscosity 
Kinematic viscosity 
Density 
Azimuthal coordinate in cylindrical coordinate 
system 
Stream function 
Dimensionless stream function, ~b = ~/'/v~a 2 
Vorticity 
Dimensionless vorticity, (o = to'a/v~ 

Superscripts 
' Dimensional quantity 
- -  Averaged quantity 

Subscripts 
s Droplet surface 
i Inlet 
n Normal to the droplet surface 
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caused by the upwind difference scheme, the hybrid scheme is 
used instead. The formulation has also been extended to the 
vaporizing droplet case. Nusselt number correlations for both 
vaporizing and nonvaporizing droplet cases have been 
obtained. These correlations can be useful in a complete spray 
analysis. 

Mathematical  formulation 

The vorticity equation for an axisymmetric flow in cylindrical 
coordinates is given by 

l),,, ~.~_l),z, O0.)'_~r __TcoOtr, , F02CO ' 02(.0 , l o w '  co'] 
ar =vL a-L~-+ a -F~  r' Or' (1) 

where co' is the component of the vorticity given by 

O ' Or',. co,= v,, (2) 
Or' Oz' 

The vorticity components in the r'  and z' axes are everywhere 
zero for axisymmetric flow. Here, the prime denotes dimen- 
sional quantities. 

The energy equation expressed in terms of temperature is 

OT' , OT' [-1 O f ,OT"x 02T '-] 

Defining a stream function ~b' as 

1 a ~ '  
v" . . . . .  (Ca) 

?J 0Z r 

1 aq,, 
v' = -  (4b) z t OFt 

transforms Equations 1-3 to 

lOq~'Oco' IOq/Oco' I &O'co, 
r' Oz' Or' ~ r' Or' Oz' +~-i ~z' 

F02co ' 02co ' 1 Oco' co'-] 
=vLa~-+ a-~+,, Or' J (5) 

l a 2 ~ o  ' 1 a q /  l a 2 ~  ' 
co' = - (6) 

r' Or '2 r '2 Or' ~ r' Oz '2 

and 

1 Od/' OT' I &l/OT' FO2T ' 02T ' 1 OT'] 
,' 0z' 0,' +< 0,' az' =~La-?r+ a - f r + ; V J  " " (7) 

respectively. 
If we set 

co'a 
co = - -  (8a)  

v; 
¢, 

~O = v;a2 (8b) 

T ' - T ' ,  
T = - -  (8c) 

T~-  T's 
Z' 

x = -  (8d) 
a 

F' 

y = -  (8e)  

U = coy (8f) 

the governing equations, Equations 5-7, can be non- 

dimensionalized to become 

a g ]  oO Re[O~au a~, ReU o~u : u  
2y LOy ax ax ~ ~ y~ Ox = &~- -~ Oy: 

U=o-~--~ ay 2 y ay 

and 

R e  Pr 

1 # U  

Y ~y 
(9) 

(10) 

I 0 ~ 0 T  O ~ 0 T ]  02T 02T lOT 
2y -~y Ox Ox-~-y J=~Tx2 + O--yT+y Oy (11) 

The boundary conditions are as follows: 
(i) at the inlet (x=0): 

~0 =½y2 (12) 

u=0  (13) 

T = ]  (14) 

(ii) at the axis of symmetry (y = 0): 

~=0 (15) 
U=O (16) 

OT 
- - = 0  (17) Oy 

(iii) at the outlet (x= X): 
a4, 
- - = o  (18) 
ax 

OU 
- - = 0  (19) 
Ox 

aT 
- -  = 0 (20)  
Ox 

(iv) at the cylinder wall Y=a  

U = 0 (22) 

OT 
--=0 (23) ay 

(v) at the droplet surface: 

~/= 0 (24)  

~n=O (25) 

T = 0  (26) 

The above formulation is valid for the nonvaporizing droplet 
case. Prakash 9 found that the surface velocity is typically small 
and does not greatly affect the heat and mass transfers or the 
vaporization rate in the gas phase. Hence, the surface velocity 
can be neglected in the gas-phase analysis. This greatly 
simplifies the problem, because the matching of the surface 
velocity along the droplet surface is eliminated. Although this 
approximation leads to the physically unrealistic slip condition 
at the interface, it is believed that the solution will not be affected 
significantly. 

The formulation has been extended to the vaporizing droplet 
case. Here the gas-phase quasi-steadiness assumption is again 
utilized, which justifies the freezing of the droplet properties and 
parameters for the gas-phase calculation. The governing 
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equations previously derived remain valid, but a species 
equation is needed. This equation, similar to the energy 
equation, is 

ReSc r0~k dY d~k dY-] 632Y d2Y 1 OY 

The current vaporization model does not account for droplet 
heating. It assumes that the droplet temperature remains 
uniform at the wet-bulb temperature, which corresponds to the 
free-stream temperature. The concentration of the evaporating 
species at the droplet surface is determined from its equilibrium 
vapor pressure, which is obtained from the Clausius-Clapeyron 
equation. The boundary conditions previously stated remain 
unchanged except for Equation 24, which becomes 

d~ 2 sin 0 dT 

00 L Re Pr 0n 

This equation accounts for the vaporization mass flux at the 
droplet surface. The symbol L is the nondimensionalized latent 
heat of vaporization. 

The local heat transfer to the droplet can be expressed in 
terms of the local Nusselt number 

OT 
Nu0= 20n (27) 

Subsequently, the overall average heat transfer to the whole 
droplet can be expressed as 

Nu = ~  Nuo sin 0 d0 (28) 

Finite difference formulation 

By using finite difference approximations, we can reduce the 
governing equations to a set of nonlinear algebraic equations 
that can be solved by an iteration scheme. We use a line-by-line 
successive underrelaxation method with a hybrid scheme. As 
pointed out in Ref. 10, the hybrid scheme has some advantages 
over the upwind and central difference schemes. The finite 
difference forms of the governing equations with nonuniform 
spacing are derived below. 

For nonuniform spacing (Figure 3) the partial derivatives of a 
function F at grid location 0 expressed in a central difference 
form are given by the following expressions: 

a~X o = (A2 -- B2)F°AB(A + B2Ft+ B) - A2F3 (29) 

d~Y o = (C2 -D2)F°cD(C + D2F2+ D) - C2F'~ (30) 

~2F = 2BF 1 + 2AF 3 -  2(A + B)F o (31) 
dx2 o AB(A + B) 

~2F _ 2DF 2 + 2CF,,-  2(C + D)Fo 
aY 2 o CD(C +O) (32) 

Here F is a generalized function representing T, ~/,, or U. 
Substituting these expressions into Equation 11 yields the 
following terms: 

(i) First term on the left side: 

Re Pr ~9~k 0T 
=CloTo-ClI T1 -C13T3 

2y c~y ~3x 

where 

Re Pr 0~ B 2 
Cll  

2y ~y AB(A + B) 

Re Pr d~k A 2 
C13 ~ 

2y Oy AB(A + B) 

Clo=Cll-~-Cl3 
(ii) Second term on the left side: 

Re Pr ( - -~x  ) ~y =C2°T°-C22 T2 - C24 

where 

Rea r  ( 0~b~ D 2 
c,2= 

(°¢') c2 
R e a r  - ~ x  CD(C+D) C24 -- ~-~-y 

C20 = C22 + C24 

(iii) First term on the right side: 

t~2T 
ax 2 = - C40To + C41Tt + C43Ta 

where 

2B 
C41 

AB(A + B) 

2A 
C43 

AB(A + B) 

C,o = C41 + C43 

(iv) Second term on the right side: 
d2T 
Oy 2 = - CsoTo + Cs2 T2 + Cs, T, 

y 

I - x  f 

(33) 

(34) 

(35) 

2 

4 

t_ )  

1 t 

Figure 3 The finite difference grid 
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where 

2D 
Csz - CD(C + D) 

2C 
C54 = (36) 

CD(C + D) 

Cso=C52 +Cs4 

(v) The third term on the right side: 

1 BT 
. . . .  C6o To + C62 T2 + C64 T4 yOy 

where 

1 D 2 
C62 y CD(C + D) 

1 C 2 
C6,~ = (37) 

y CD(C + D) 

C6o = C6z + C64 
After rearranging terms, we obtain the discretization equation 

CoTo =CI T1 +C2T2 +CAT3 +C4T4 (38) 

where 

Ct=Cll +C41 
C 2 = C22 -F C52 "]- C62 

C3 ~-~ C13 + C43 (39) 

C4=C24 +C54 +C64 
Co=Cx +C2+Ca+C4 

This discretization formulation is obtained by the central 
differencing method. For the upwind difference scheme, we use 
upstream differencing instead of central differencing in the 
convective terms. The C's given in Equations 33 and 34 become 

Re Pr A 2 
C l 1 ~ - - - - -  2y A 

RePr A1 
C 1 a = - -  - -  (40) 

2y 

C1o=Cll +Cla 

and 

Re Pr B2 
C22 2y c 

Re Pr B1 
C 2 4 = - -  (41) 

2y D 

C20 =C22 -{- C24 

where 

A1-----[ ~-~, 01 

BI = [ -  ~-~X' 01] (42) 

The symbol [I ]] stands for the largest quantity contained 
within it. It is equivalent to AMAX1 in the FORTRAN 
language. The discretization equations, Equations 38 and 39, 
remain the same. 

In the present study, the hybrid scheme is used. It is basically a 
combination of the central difference and upwind difference 
schemes. The central difference scheme is utilized when the 
following conditions are satisfied: 

Re Pr 0~ Re Pr &k 
- - - - B < 2  and - - - - A > - 2  

2y Oy 2y Oy 

for x direction and 

RePr / c~¢,'~ 1 ] _  _ [RePr ( _ a ¢ ' ~ _ l ] c  > 
and 

L 2y \ Ox) yJ 
for y direction. 

Otherwise, the upwind difference scheme will be used. In that 
situation regime, the Peclet number is large and the flow is 
convection dominating, which results in a flat profile with 
negligible diffusion at the cell boundary. The upwind difference 
scheme always calculates the diffusion term from a linear profile 
and thus overestimates diffusion at large Peclet numbers. In the 
hybrid scheme, the diffusion term is set to zero (i.e., C41, C,a, 
C4o, Cs2, and C54 are zero). Thus the shortcoming of the 
upwind scheme is eliminated. 

The same procedure can be applied to obtain discretization 
equations for the vorticity and stream function equations, 
Equations 9 and 10. For the vorticity equation, we have 

Re[-&kBU ~3¢__/~)U-]+ReUd¢ 0"U ~2U 18U 
2-y- L~Y dx •x By ] y2 O.X"- ~X 2 4 By 2 y by 

Replacing the derivatives by finite difference formulations gives 
the following expressions: 

(i) First term on the left side: 

Re 0~k 0U 
=DloUo-DllU1 -DIaU3 

2y 0y t~x 

where 
Re 8~ B 2 

O11 = 2y ~y aB(A + B) 

Re 8¢ A 2 

Dla-2y Oy AB(A+B) 

Dlo=Dll +D13 
(ii) Second term on the left side: 

~yey ( - ~ )  ~ff-~=D20Uo-D22U2-D24U4 

where Re( 0% 
n== - ~  \ - ~  / c~(c + m 

Re / ~¢ \  C 2 

D2o =D22 +D24 

(iii) Third term on the left side: 

Re ~ 
y-q- U ~x =DaoUo 

where 
Re 8~k 

Ds0- y2 0x 

(43) 

(44) 

(45) 
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(iv) The terms on the right side: 
02U 
Ox 2 - -C40Uo +C4tU1 +C4aU3 

O2U 
~y2 = --  C s o U o  "[" C 5 2 U 2  "~- C54U4 

1 ~U 
. . . .  C 6 0 U  0 --  C 6 2 U  2 - C64U 4 yay 

where the C's are as before. 
The discretization equation for 

becomes 
the vorticity equation 

DoU o = D t U t + D2U 2 + D 3 U  3 + D4U 4 (46) 

where 

DlffiDtt +C4t 

D2 = D22 + C52 -- C62 

D3 ----" Dt a + C43 (47) 

D 4 = D24 + C54- C64 

Do=D1 +D2+Da+D4+D3o 

For the upwind difference scheme, the D's given by Equations 
43 and 44 become 

Re A 2 
D 1 1 - - - - - - -  2yA 

Re At 
Dr3 -  2y B (48) 

Dlo=Dtt +Dt3 

and 

Re B 2 
D22 = - -  _ _  2y¢ 

Re Bt 
D 2 , t = - - - -  2yD 

D20 - - D 2 2  +D24 .  

For the hybrid scheme, central difference is used when 

Re ~ /  Re ~ ,  
- - - - B < 2  and - - - - A > - 2  
2y0y  2y 0y 

for the x direction and 

[Re ( _ O ~ + l ] D < 2  and 
Ty\ Ox} y j  

(49) 

Re 0~, 1 

for the y direction. Outside these ranges, upwind difference is 
used with the diffusion term set equal to zero, as explained 
earlier. 

Finally, for the stream function equation, Equation 10, we 
have 
~2~ 
~x 2 = - C,o~o + C,1~1 + C43~3 

02~ 
~y2 = - CsoOo + C52~2 + C54~4 

1 ~ 
. . . .  C60~0-C62~2-C64~, yOy 
and Equation i0 becomes 

Eo~o =E1~1 + E2~'2 +E3~3 + E4~4-  Uo (50) 

o o 

¢-) 

O 
°_  

0 
0 

° .  
tO 

>.- 

O 
O 

° .  

O 

olm 
4- - -  .00 

Figure 4 
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where 

El =C41 

E 2 = Cs2  --  C62 

E 3 = C 4 3  (51) 

E4 = C s 4 -  C64 
Eo=E1 +E2+E3+E4 

Equations 38, 46, and 50 form a set of nonlinear algebraic 
equations which can be solved by an iteration scheme. We use a 
line-by-line successive underrelaxation method. 

Results and discussion 

In order to examine the accuracy oftbe hybrid scheme as well as 
the validity of the cylindrical cell model, results for the 
nonvaporizing single-droplet case have been obtained. Both the 
hybrid and upwind schemes are used, and the results are 
compared with those obtained in Refs. 11 and 12. The mesh 
geometry for a single droplet is shown in Figure 4. The free- 
stream boundary conditions are applied at the inlet, outlet, and 
cell envelope. Numerical solutions have been obtained for 
Re = 10, 50, and 100. Surface vorticity comparisons for Re = 10 
and 100 are shown in Figures 5 and 6. For  a low Reynolds 
number (Re = 10), the results obtained by different schemes are 
in close agreement. For  higher Reynolds numbers (Re= 100), 
the results obtained by using the hybrid scheme are still in good 
agreement with those of Refs. 11 and 12, but the upwind scheme 
yields lower values. Similar results have been found in the 
Nusselt number calculations, which are summarized in Table 1, 
along with the results from the existing literature. The value of 

the average Nusselt number calculated by using the hybrid 
scheme for Re = 100 and Pr = 0.7 is 6.811, as compared to 5.979 
obtained from the upwind scheme, and is closer to the value 
6.956 obtained by Renksizbulut and Yuen. 11 The results show 
that the hybrid scheme yields better agreement with the existing 
literature than does the upwind scheme. 

Numerical solutions have also been obtained for a three- 
droplet array. The nonuniform mesh geometry with spacing 
ratio b/a = 1.5, including an entrance region, is shown in Figure 
7. The average Nusselt numbers for Reynolds numbers from 10 
to 200, b/a ranging from 1.5 to 4.0, have been obtained. The 
streamline and isotherm patterns for Re = 10, 50, 100, and 150, 
Pr = 1, and b/a = 1.5 are presented in Figures 8 and 9. The results 
obtained from Tale t  al. 6 have been compared with the present 
results. They are shown in Figures I0 to 12 and in Table 2. The 
Nusselt numbers obtained in the present study from the upwind 
scheme are in reasonably close agreement with the values 
obtained by Tale t  al. 6 They are lower than the values predicted 
by the more accurate hybrid scheme. 

C3 
0 

'2-I 

0 >-= 

m 

o ~ 
6~ 

0 PRESENT WORK, HYBRID SCHEME 
PRESENT WORK, UPWIND SCHEME 
RENKSIZBULUT ANO YUEN 

X LECLAIR, HAMIELEC AND PRUPPACHER 

C~ 
0 

F'3 

'0.00 

Figure 6 

4'5. O0 90. O0 1'35 • O0 
THETA 

Surface vorticity comparison for Re=t00  

180.00 

Table 1 Comparison of average Nusselt numbers for 
nonvaporizing single droplet 

Present work 
Renksizbulut 

Hybrid scheme Upwind scheme and Yuen [11] Remarks 

3.478 3.454 3.396 Re = 10 
Pr = .7 

6.811 5.979 6.956 Re = 1 O0 
Pr = .7 
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Figure 7 Nonuniform mesh geometry for three-droplet array 
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The effects of entrance length and outlet boundary conditions 
have been examined. Entrance length has negligible effect on the 
Nusselt number. An attempt has beon made to assume periodic 
distribution of the flow field and to express the outlet boundary 
conditions as 

T(X, y) T ( X -  2b/a, y) 
T ( X -  2b/a, y) T(X - 4b/a, y) 

No significant change in Nusselt number was detected. 
As mentioned earlier, our objective is to investigate the effects 

of droplet spacing on the vaporization characteristic of an 
individual droplet in a spray and to obtain a Nusselt number 
correlation useful in a complete spray analysis. We have tried to 
correlate the numerical results obtained in the present study, 
and we have correlated the Nusselt number as a function of the 
Reynolds number (Re) and droplet spacing (b/a) for each 
droplet in the three-droplet array. 

For the first droplet, 

N--~ = 2.219(Re)°'a°6 ( ! )  -°'177 

For the second droplet, 
/h', -o.ls7 

Nu = 2.268(Re)°'236~a ) 

For the third droplet, 

Nu = 2.310(Re)°'2' 7 (~)  -°172 

These correlations correlate the data with a 5 % error. The 
numerical data along with the correlation curves are presented 
in Figures 13-15. 

For evaporating droplets, the vapor leaving the surface 
interacts with the boundary layer flow, and the thickness of the 
thermal boundary layer increases. Therefore, the vaporization 
process lowers the heat transfer to the droplet. Mass transfer 
numbers from 0 to 3 have been investigated. The effect of 
vaporization is illustrated in Figures 16 to 18 with plots of the 
Nusselt number as a function of the Reynolds number. These 
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Figure 10 Local Nusselt number comparison for the first droplet of 
three-droplet array, b/a=1.5, Pr=l 
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Figure 11 Local Nusselt number comparison for the second 
droplet of three-droplet array, b/a=1.5, Pr=l 

plots give the Nusselt number for six values of the mass transfer 
number, with b/a held constant. At a given mass transfer 
number, the Nusselt number increases monotonically with the 
Reynolds number, and the increase is logarithmically linear. 
The Nusselt numbers for the above-mentioned range of 
parameters have been correlated by the following equations: 

For the first droplet, 
/h',, -o.17s 

N--u = 2.272(Re)°'a°9 ~a ) (1 +B) -°'sa' 
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Figure 12 Local Nusselt number comparison for the third droplet of 
three-droplet array, b/a=1.5, Pr=l 

Table 2 Comparison of average Nusselt numbers for 
nonvaporizing three-droplet array: b/a=1.5, Re=100, Pr=l 

Type of solution 

Present work 
hybrid scheme 
Present work 
upwind scheme 
Tal eta/. 6 
upwind scheme 

Present work 
hybrid scheme 
Present work 
upwind scheme 
Talet  al. s 
upwind scheme 

Nu for three-droplet array 

First Second Third 

8.928 5.553 4.809 

7.869 5.170 4.570 

7.644 4.765 4.061 

8.928 6.361 6.030 

7.869 6.070 5.924 

7.644 6.151 6.270 

Remarks 

Based on inlet 
temperature to the 
first droplet 

Based on inlet 
temperature to 
each cell unit 
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For the second droplet, 

~-~ =2.474(Re)O.222(!)-°'16S(l +B)-O.616 

For the third droplet, 

~-u _2.477(Re)O.2O6(!)-°'191(1 +B) -o.6ol 

These correlations and some of the numerical data are 
presented in Figures 19 to 21. These correlations are by no 

means universal. They are derived for the parameter ranges 
considered to be relevant to spray combustion. 

The results of this work indicate that the Nusselt number 
based on the local inlet temperature becomes approximately 
constant after the first droplet. The second droplet appears to be 
representative of droplets of the droplet array. As mentioned 
earlier, our goal is to obtain a mathematical relationship 
between transfer rate and local ambient properties which can be 
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Figure 15 Correlation of Nu~el t  number for the third droplet of 
nonvaporizing three-droplet array 

"o 

T .  

re) .  

=o 

Y b / e = l . 5  B=0 6 
X b / a = l  .5 R=I 0 
~( b / a = l  .5 B=I 5 
X b / a = l  .5  B=2 0 
I b / a = 1 . 5  8=2 5 

= b / a = l . 5  B=3 0 

~o' ~ ~ ~ ~ ~ ~o' 
Re 

Figure 16 Average Nusselt number for the first droplet of 
vaporizing three-droplet array 
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Figure 18 Average Nusselt number for the third droplet of 
vaporizing three-droplet array 

applied directly as an input for a complete liquid spray analysis. 
The correlation obtained for the second droplet would be the 
most appropriate one. 

The one drawback in the present nonuniform mesh geometry 
is that it does not have a uniformly fine grid along the droplet 
surface. Therefore the accuracy of the solution will be affected by 
relatively coarser grids in spite of the fine spacings in some other 
regions of the droplet surface. A grid generation scheme to 

improve numerical accuracy is currently underway. The results 
of that study will be reported in a forthcoming publication. 

Conclusion 

The effects of droplet spacing on the heat and mass transfer 
characteristics of an individual droplet in a liquid fuel spray was 
studied. A cylindrical cell model with nonuniform grid spacing 
was used. The Navier-Stokes equations expressed in vorticity- 
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Figure 19 Correlation Nusselt number for the first droplet of 
vaporizing threee-droplet array 
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Figure 20 Correlation Nusselt number for the second droplet of 
vaporizing three-droplet array 
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stream-function form and the energy equation are solved 
numerically by a hybrid scheme. Nusselt number correlations of 
individual droplets for both the vaporizing and the 
nonvaporizing droplet array have been obtained. These 
correlations, which include droplet interaction, can be used for a 
more complete spray model. 
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